Showing posts with label landing. Show all posts
Showing posts with label landing. Show all posts

27 September 2012

Grasshopper at SpaceX

Reusing spacecraft instead of throwing them away after each launch would massively reduce costs per launch and costs per kilogram of payload. The Space Shuttle was largely reusable, but the work involved in making that possible was costly and safety was jeopardised.

SpaceX's Grasshopper
SpaceX have a number of projects going on in parallel. Perhaps they are best known for launching their Dragon spacecraft in May, successfully docking with the International Space Station (ISS), delivering cargo, and bringing a return cargo safely back to Earth. They plan to fly their first contracted operational flight to the ISS for NASA on 7th October.

But one of their objectives is to further reduce the cost of launching spacecraft. Their Falcon range of launchers are already cheap enough to take launch contracts from other operators, including Ariane. But to make a further reduction in costs SpaceX have always expressed the importance of making Falcon stages reusable.

Normally, the launcher stages plunge back to earth and are destroyed on impact with the ocean. The one exception to this in the past was the Space Shuttle's solid rocket boosters that descended by parachute and were refurbished, refilled with solid fuel, and restacked for another launch.

SpaceX is working on returning Falcon stages under rocket power (the 'Grasshopper' project) and the first test last week involved lifting a first stage tank structure to a height of just six feet and landing again. The test was a success and will lead to higher and longer flights attempting a return to the launch area.



If they can develop a commercial version of this powered recovery technique with the first stage (and it will be a major challenge), the company will then focus on techniques to recover the second stage of the launcher.

This will be a far greater challenge as the speeds, altitudes and horizontal distances involved will all be much larger.


Copyright

Creative Commons Licence

© 2002-2022, Chris J Jefferies

This work is licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported License. A link to the relevant article on this site is sufficient attribution. If you print the material please include the URL. Thanks! Click through photos for larger versions. Images from Wikimedia Commons will then display the original copyright information.
Real Time Web Analytics