Showing posts with label Falcon 9. Show all posts
Showing posts with label Falcon 9. Show all posts

24 April 2013

Space, a new era

A new age is beginning in space commerce. After a little history this article considers where things may go next in timescales of ten, twenty and a hundred years. This is no longer purely science fiction, it is becoming technological fact. It's possible to foresee voyages to the stars a hundred years from now.

Apollo 4 on the pad
Yes, we really are at the beginning of a new era in spaceflight. Until recently almost all efforts in space were the preserve of governments or multinational bodies like the European Space Agency (ESA).

In a few areas private companies were able to play a role, but the funding was mostly government based.

The only real exception has been for communications satellites, and even these had to be flown on rockets designed and built for governments.

In this article we'll look at how the situation has been changing, especially over the last five years.

Early history - I was nine-years-old when Sputnik 1 was launched by the Soviet Union in October 1957. I remember hearing its bleeping tone on the radio and noticing how anxious Mum and Dad seemed that the Russians rather than the Americans had achieved this feat of engineering.

Of course, America wasn't far behind; though early European cooperation in rocketry failed.

In April 1961 Yuri Gagarin flew on Vostok 1 and before long orbital trips seemed almost routine. The Americans landed Apollo 11 on the Moon in July 1969. Today we can add many more nations, an international organisation (ESA), and even a private company (SpaceX) to the list.

Commercial satellites - Commercial space businesses began with government contracts to construct rockets and build satellites. But the first businesses to make a profit from space were broadcasting and telecommunications companies.

Since then direct broadcast TV, weather satellites, earth resources, mapping, messaging, delivery tracking and global positioning (GPS) have become mainstream commercial applications. And military satellites, although not commercial in nature, are widely deployed and used by many national governments.

The space launch industry - With so many commercial satellite operators, it was clear that there was a  market for a commercial space launch industry.

Until recently those launchers have been funded and specified by governments, but now SpaceX, a number of other companies and some cooperative ventures such as the United Launch Alliance (ULA) are looking to make a profit by selling launch services. This includes provision of the launch vehicles, payload integration, fuelling, pad infrastructure, and managing the launch itself.

Virgin Galactic - Virgin is close to providing sub-orbital short hops into space. They plan to cater for space tourism as well as offering research flights. For the first time scientists and engineers will be able to fly with their experiments regularly and return them reliably. This service may replace throw-away sounding rockets.

Other companies are working on sub-orbital flight too, but Virgin are very close. Their spacecraft (SpaceShipTwo) is about to begin powered test flights.

SpaceX - Elon Musk's company already offers two sizes of commercial launcher (Falcon 1e and Falcon 9) and is close to testing Falcon Heavy for even larger payloads. They are also using their Dragon cargo ship to fly regularly to the International Space Station (ISS), are working hard on a crewed version of Dragon.

DragonLab is a free-flying commercial venture to provide a weightless platform for science and technology. Any organisation can book space on DragonLab knowing that their payload can be recovered and flown again as often as required.

A further project (Grasshopper) is developing the technology to safely land and re-use Falcon 9 rocket stages. And in the more distant future SpaceX has ambitions to see a viable human colony established on Mars.

Bigelow - Bigelow Aerospace has two prototype inflatable space habitat modules in orbit, is planning to attach one to the ISS for testing by NASA, and plans to offer orbital accommodation for science as well as for tourism.

Mars OneMars One is a non-profit foundation based in the Netherlands. They hope to colonise Mars and pay for it by a combination of donations, sponsorship and TV contracts. The plan is to send four people to Mars in 2023 with four more arriving every two years after that. These are one way trips. Mars One is now open for applicants and is signing contracts for initial design studies.

Asteroid mining - At least two companies have been created recently with a view to the commercial exploitation of asteroidal materials. Asteroids are rich in rare and precious metals as well as volatiles in the form of ices.

Where is it all leading? - This really is a special time in spaceflight. We are progressing from state funded and controlled projects at relatively small scale and high cost, towards commercial operations taking humankind and our machines further and doing so profitably.

The immediate future offers the prospect of short hops into space for anyone with £20 000 to £30 000 to spare, a reusable Falcon 9 first stage substantially reducing the cost to orbit, and commercial access to low Earth orbit (LEO) for both crewed and uncrewed spacecraft. This is likely to include small capsules like SpaceX's Dragon and much larger volumes such as the Bigelow inflatable modules. Much of this will happen in the next ten years.

In the longer term we can expect commercial operations to develop raw material supplies from Asteroids, as well as small colonies on Mars and perhaps the Moon too. For this we may be looking at a twenty year timescale.

But make no mistake, once this process has begun there will be no stopping it. We are probably heading for a Solar System wide civilisation within the next century. Children born today will find it quite normal to watch and read material created on a different planet or in orbit elsewhere around our local star.

And once the outer planets have been reached it will be only a matter of time before our descendants start to consider how best to reach other stars. Perhaps they will send out self-sufficient colonies based on and inside modified asteroids.

Questions:

  • If humans colonise space, how will that affect society, faith, and the future?
  • Are you going to sign up for Mars One's one way trip to Mars? (I'm not!)
  • How would you feel if your children or grandchildren were living on Mars?
  • If the cost comes down enough, would you fancy a sub-orbital hop into space?

See also:




27 September 2012

Grasshopper at SpaceX

Reusing spacecraft instead of throwing them away after each launch would massively reduce costs per launch and costs per kilogram of payload. The Space Shuttle was largely reusable, but the work involved in making that possible was costly and safety was jeopardised.

SpaceX's Grasshopper
SpaceX have a number of projects going on in parallel. Perhaps they are best known for launching their Dragon spacecraft in May, successfully docking with the International Space Station (ISS), delivering cargo, and bringing a return cargo safely back to Earth. They plan to fly their first contracted operational flight to the ISS for NASA on 7th October.

But one of their objectives is to further reduce the cost of launching spacecraft. Their Falcon range of launchers are already cheap enough to take launch contracts from other operators, including Ariane. But to make a further reduction in costs SpaceX have always expressed the importance of making Falcon stages reusable.

Normally, the launcher stages plunge back to earth and are destroyed on impact with the ocean. The one exception to this in the past was the Space Shuttle's solid rocket boosters that descended by parachute and were refurbished, refilled with solid fuel, and restacked for another launch.

SpaceX is working on returning Falcon stages under rocket power (the 'Grasshopper' project) and the first test last week involved lifting a first stage tank structure to a height of just six feet and landing again. The test was a success and will lead to higher and longer flights attempting a return to the launch area.



If they can develop a commercial version of this powered recovery technique with the first stage (and it will be a major challenge), the company will then focus on techniques to recover the second stage of the launcher.

This will be a far greater challenge as the speeds, altitudes and horizontal distances involved will all be much larger.


27 April 2012

SpaceX takes another step

SpaceX plans to send its Dragon spacecraft to dock with the space station, perhaps as soon as Monday 7th May. If successful this will be a major step forward for the comapny.

Dragon at the ISS (artist's impression)I've been following the development of SpaceX's launcher and spacecraft hardware with great interest. On Monday 7th May, unless there's a further schedule change, the privately owned company will make its first attempt to fly a Dragon spacecraft to dock at the International Space Station (ISS).

The launcher - Falcon 9 has flown only twice so far, both launches were successful. On its first flight the rocket carried a dummy Dragon to orbit. On the second flight a fully functioning Dragon was orbited and made a successful splashdown and recovery off the Californian coast.

Two successes out of two attempts is a great performance, but tells us almost nothing about levels of reliability. A third success would boost confidence, a failure would be a serious setback.

Falcon 9 (and the smaller Falcon 1) both have commercial orders booked for the satellite launch business. In the case of Falcon 9 those bookings alrready represent a considerable part of the worldwide launch business. If the launcher continues to fly successfully it will quickly become proven as flight frequency ratchets up. At least four further launches are planned in 2012, both for freight delivery to ISS and for commercial customers.

The spacecraft - Dragon has flown once before, this time it needs to repeat the success, navigate to the ISS, and automatically fly to within a few metres of the station. If it manages this, the station's remote manipulator arm will dock it to one of the modules and the ISS astronauts will open it, unload the cargo, and load Dragon with experimental material for return to Earth.

Finally, SpaceX will fly the craft back to splashdown in the Pacific and the capsule and its cargo will be recovered.

A difficult mission - We shouldn't underestimate the difficulties faced by SpaceX. The mission is complex and much of it goes further than the company has ever gone before. It will not be suprising if the mission fails in some or all of its objectives. Nevertheless I think the chances of success are quite good, and I wish SpaceX well with the mission.

What next? - If the flight is a success, NASA has a contract with SpaceX for further cargo flights to the ISS. This would involve two or more flights annually for several years. As mentioned above, there are also contracts with other companies and organisations to fly a variety of other spacecraft. Furthermore, SpaceX is offering commercial Dragon flights (DragonLab) for science and technology payloads for return to Earth.

Expect to see a new version of Dragon for crewed NASA flights to the ISS (or indeed for other organisations). SpaceX is already well along in developing the necessary hardware for this.

And there is a much larger launcher in the pipeline too, Falcon Heavy. This is scheduled for its first test flight later this year, though it may slip to 2013.

For more on SpaceX and their plans see their Google+ page.

03 October 2011

TECHNOLOGY - Reusable rockets

SpaceX is an innovative space launch company with a number of impressive 'firsts' to their name and a large order book of reservations for satellite launches on their Falcon 1 and Falcon 9 vehicles.

The planet MarsThe company was founded by Elon Musk using capital earned by his earlier IT businesses, particularly PayPal which was sold in 2002 for $1.5 billion. Musk's share was more than 10% enabling him to start SpaceX as well as the electric car company, Tesla.

In September 2008 Falcon 1 achieved earth orbit, the first time a privately owned company had orbited a liquid fuelled rocket. All previous successes were by the government programs of a variety of nations.

In June 2010 Falcon 9, a much larger vehicle, also flew successfully to orbit. And in December 2010 Falcon 9 flew again, this time carrying a Dragon capsule which completed two orbits, successfully re-entered, splashed down and was recovered. This was another first for a private company.



A heavy rocket is planned (Falcon 9 Heavy) and a demonstration flight to dock Dragon to the International Space Station (ISS) is due in 2012.

But now, SpaceX has announced plans for full reusability. If they can pull this off it will be an utter game-changer, reducing the cost to orbit by perhaps 100 times.

Elon's recent presentation to the US National Press Club explains the reason for the attempt to operate a reusable rocket. His long term goal is nothing less than to colonise Mars. This might sound crazy, but he has a track record of doing things that were thought to be impossible. So maybe he will succeed. If anyone can, Elon and SpaceX can!

09 December 2010

TECHNOLOGY - SpaceX, another first

It was a privilege to be able to watch SpaceX's live webcast of the launch of their first Dragon capsule. This is a unique achievement, it's the first time a private company has put a spacecraft into orbit and safely returned it to earth.

Launch of Falcon 9 and Dragon, 8th December 2010The icing on the cake is that they also manoevered Dragon while in orbit, testing some of the moves that will be required to dock with the International Space Station (ISS). But why is all this such a great thing?

Let me explain. The human race undoubtedly has a built-in urge to explore and try out new things. We might have different views on the reason for this, and some might argue that space exploration is far too expensive to justify. But for whatever reason people have a built-in desire to explore beyond the boundaries, to go further than before, to see and understand new things.

SpaceX have done something amazing. They are a small company working on a small budget, in just eight years they have developed two launcher families and a spacecraft and have won a NASA COTS contract to resupply the ISS and return cargo to Earth. In the past only nations and groups of nations have returned a spacecraft from orbit. The Soviet Union and the United States achieved this in the early 1960s, and later China, Japan, India, and the European Space Agency (ESA) have done so too.

SpaceX was founded and is managed by Elon Musk, reinvesting some of his personal fortune earned by creating PayPal. Elon and SpaceX are determined to reduce the cost and increase the reliability of spaceflight tenfold and they have now demonstrated a realistic chance of doing so. Not only did they fly Dragon to orbit and return it intact, the spacecraft and (potentially) the first stage of Falcon 9 are reusable for multiple flights.

They have built all the hardware themselves, including the rocket engines. The designs are deliberately simple and the propulsion systems are modular and include a great deal of built-in redundancy.

Finally, Dragon and Falcon 9 were both designed with a view to launching crews to low Earth orbit. This is expected to take a further two to three years and Dragon will accomodate up to seven astronauts.

SpaceX deserve a huge round of applause for an outstanding achievement. As a recent aerospace start-up company what they have done is truly game-changing.

See all articles about SpaceX.

05 October 2010

TECHNOLOGY - Dragon readies for launch

Most people are aware that the American Space Shuttle fleet is being retired. The last flight is currently scheduled for next year, 2011. After that, the only way Americans will be able to travel to orbit and dock at the International Space Station (ISS) will be to buy seats from the Russians.

SpaceX's Dragon capsuleThe Constellation Program that was intended to replace the Shuttle has been cut and modified several times and is unlikely to provide a crewed launch facility soon or, perhaps, ever. China has a crewed vehicle, and Europe and Japan both have operational cargo craft from which crewed vehicles might be developed. India is planning and building a crewed launch system.

What the USA does have however is something quite unique. It has several businesses designing and building crewed spacecraft as commercial ventures.

One of these is SpaceX, based in California. They launched the first of their Falcon 9 rockets carrying a dummy Dragon capsule in June 2010. In November they plan to launch another Falcon 9 with a fully functioning Dragon cargo capsule to test the re-entry and landing systems. If all goes well, next year they will be in a position to begin carrying and returning cargo for the ISS - and they already have a full order book from NASA and other clients around the world.

Dragon was designed from the ground up to be capable of carrying seven astronauts in place of cargo. SpaceX is hoping that once Dragon is proven as a reliable cargo system NASA will decide to fund its upgrade and testing as a crewed vehicle.

I wish SpaceX well and hope the mission in November will be a complete success.

(For full details and more photos visit the SpaceX Updates page.)

See also: Up, up, and away

Copyright

Creative Commons Licence

© 2002-2014, Chris J Jefferies

This work is licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported License. A link to the relevant article on this site is sufficient attribution. If you print the material please include the URL. Thanks! Click through photos for larger versions. Images from Wikimedia Commons will then display the original copyright information.
Real Time Web Analytics